Eight Queens Puzzle
27 July 2024
A solution to the Eight Queens Puzzle.
Solution
""" eight_queens.py """
# usage: python3 eight_queens.py 8
import sys
def valid(p, n, data):
""" placing a queen at p is valid for n x n board with data """
row, col = divmod(p, n)
# (*) not required if advancing to start of next row after placing queen
# if 'Q' in data[p - col:p]:
# return False
if 'Q' in [data[p - (i + 1) * size] for i in range(row)]:
return False
r, c = row, col
while r > 0 and c > 0:
r, c = r - 1, c - 1
if data[r * n + c] == 'Q':
return False
r, c = row, col
while r > 0 and c < n - 1:
r, c = r - 1, c + 1
if data[r * n + c] == 'Q':
return False
return True
def display(n, data):
""" visualise n x n board with data """
output = ''
for i in range(n):
output += ' '.join(data[i * n:(i + 1) * n] + ['\n'])
return output
size = int(sys.argv[1])
assert size > 0
board = ['.' for _ in range(size * size)]
positions = []
pos = 0
count = 0
complete = False
while not complete:
if valid(pos, size, board):
board[pos] = 'Q'
positions.append(pos)
if positions[0] >= size:
complete = True
elif len(positions) == size:
count += 1
# print(display(size, board))
else:
pos = (pos // size + 1) * size # (*) advance to start of next row
else:
pos += 1
while pos == size * size:
if positions:
pos = positions.pop()
board[pos] = '.'
pos += 1
else:
complete = True
pos = -1
print(count)